Monday 23 December 2013

Atmospheric electricity - class 12 notes with numercals

Atmospheric Electricity: Phenomena, Measurements, and Applications.


Atmospheric Electricity: Phenomena, Measurements, and Applications.  Atmospheric electricity refers to the electrical properties and phenomena that occur in the Earth's atmosphere. It is a complex and fascinating field of study that has captured the attention of scientists for over a century. The Earth's atmosphere is constantly charged due to the interaction of the Sun's radiation, cosmic rays, and thunderstorm activity. This has led to the discovery of many important phenomena, including lightning, the ionosphere, and the aurora borealis. Atmospheric electricity has practical applications in areas such as weather forecasting, radio communication, and the design of lightning protection systems. In this article, we will explore the sources of atmospheric electricity, the different atmospheric electrical phenomena, the measurements used to study it, and its practical applications. We will also answer some frequently asked questions about atmospheric electricity  Table of Contents: Atmospheric Electricity: Phenomena, Measurements, and Applications.  • Introduction to Atmospheric Electricity  • Sources of Atmospheric Electricity  • Atmospheric Electrical Phenomena  • Lightning  • Thunderstorms  • Atmospheric Electrical Measurements  • Applications of Atmospheric Electricity  • Frequently Asked Questions  1. Introduction to Atmospheric Electricity  Atmospheric electricity refers to the electrical properties and phenomena that occur in the Earth's atmosphere. The Earth's atmosphere is constantly charged due to the interaction of the Sun's radiation, cosmic rays, and thunderstorm activity. Atmospheric electricity has been studied for over a century and has led to the discovery of many important phenomena, including lightning, the ionosphere, and the aurora borealis.  2. Sources of Atmospheric Electricity  The primary sources of atmospheric electricity are the Sun's radiation, cosmic rays, and thunderstorm activity. The Sun's radiation causes the ionization of gases in the upper atmosphere, leading to the formation of the ionosphere. Cosmic rays, which are high-energy particles from space, also contribute to the ionization of the atmosphere. Thunderstorm activity causes the buildup of electric charges in the lower atmosphere, leading to lightning and other electrical phenomena.  3. Atmospheric Electrical Phenomena  Atmospheric electrical phenomena include lightning, thunderstorms, sprites, and elves. Lightning is the most well-known and dramatic atmospheric electrical phenomenon. It is caused by the buildup of electric charges in the atmosphere, leading to a discharge of electricity between the clouds and the ground. Thunderstorms are also a common atmospheric electrical phenomenon and are characterized by the buildup of electric charges in the lower atmosphere, leading to thunder and lightning.  Sprites and elves are less well-known atmospheric electrical phenomena. Sprites are large-scale electrical discharges that occur high in the atmosphere, above thunderstorms. Elves are electromagnetic pulses that occur in the ionosphere, caused by the interaction of lightning discharges with the ionosphere.  4. Lightning  Lightning is a natural electrical discharge that occurs in the atmosphere. It is caused by the buildup of electric charges in the atmosphere, which leads to a discharge of electricity between the clouds and the ground. Lightning can be very dangerous and can cause injury or death to people and damage to buildings and other structures.  There are several types of lightning, including cloud-to-ground lightning, intra-cloud lightning, and cloud-to-cloud lightning. Cloud-to-ground lightning is the most well-known type and occurs when a discharge of electricity travels from the cloud to the ground. Intra-cloud lightning occurs entirely within the cloud, while cloud-to-cloud lightning occurs between different clouds.  5. Thunderstorms  Thunderstorms are a type of weather phenomenon characterized by the buildup of electric charges in the atmosphere. Thunderstorms can produce lightning, thunder, heavy rain, strong winds, and even tornadoes. Thunderstorms can be very dangerous and can cause property damage and loss of life.  Thunderstorms are caused by the interaction of warm and cold air masses. Warm air rises, and as it does, it cools and condenses into clouds. The updrafts within the cloud cause the buildup of electric charges, which can lead to lightning and thunder.  6. Atmospheric Electrical Measurements  Atmospheric electrical measurements are used to study the electrical properties of the atmosphere. These measurements include electric field measurements, atmospheric conductivity measurements, and measurements of atmospheric ionization.  Electric field measurements are used to measure the strength and direction of the electric field in the atmosphere. Atmospheric conductivity measurements are used to measure the ability of the atmosphere to conduct electricity. Measurements of atmospheric ionization are used to measure the concentration of ions in the atmosphere.  7. Applications of Atmospheric Electricity  Atmospheric electricity has many practical applications. For example, it is used in the design of lightning protection systems for buildings and other structures. Atmospheric electricity is also used in the    Continue  study of the ionosphere, which is important for radio communication and satellite navigation. Additionally, atmospheric electrical measurements can be used to study weather patterns and predict severe weather events.  8. Frequently Asked Questions  Q: Can atmospheric electricity be used as a source of energy? A: While atmospheric electricity is a source of energy, it is not currently practical to harness it for energy production due to the high cost and low efficiency of existing technologies.  Q: How is lightning formed? A: Lightning is formed by the buildup of electric charges in the atmosphere, which leads to a discharge of electricity between the clouds and the ground.  Q: What is the ionosphere? A: The ionosphere is a region of the Earth's upper atmosphere that is ionized by solar radiation. It plays an important role in radio communication and satellite navigation.  Q: What is atmospheric conductivity? A: Atmospheric conductivity is a measure of the ability of the atmosphere to conduct electricity. It is influenced by factors such as temperature, humidity, and ionization.  Q: How can atmospheric electricity be measured? A: Atmospheric electricity can be measured using a variety of instruments, including electric field meters, ion counters, and atmospheric conductivity meters. These instruments are used to measure the electric field, ionization, and conductivity of the atmosphere.  Q: Is atmospheric electricity dangerous? A: Atmospheric electricity can be dangerous, particularly during thunderstorms and lightning strikes. It is important to take precautions to protect yourself during severe weather events.  Q: What are sprites and elves? A: Sprites and elves are atmospheric electrical phenomena that occur high in the atmosphere. Sprites are large-scale electrical discharges, while elves are electromagnetic pulses caused by the interaction of lightning with the ionosphere.

Atmospheric Electricity: Phenomena, Measurements, and Applications.

Atmospheric electricity refers to the electrical properties and phenomena that occur in the Earth's atmosphere. It is a complex and fascinating field of study that has captured the attention of scientists for over a century. The Earth's atmosphere is constantly charged due to the interaction of the Sun's radiation, cosmic rays, and thunderstorm activity. This has led to the discovery of many important phenomena, including lightning, the ionosphere, and the aurora borealis. Atmospheric electricity has practical applications in areas such as weather forecasting, radio communication, and the design of lightning protection systems. In this article, we will explore the sources of atmospheric electricity, the different atmospheric electrical phenomena, the measurements used to study it, and its practical applications. We will also answer some frequently asked questions about atmospheric electricity




Table of Contents: Atmospheric Electricity: Phenomena, Measurements, and Applications.


• Introduction to Atmospheric Electricity

• Sources of Atmospheric Electricity

• Atmospheric Electrical Phenomena

• Lightning

• Thunderstorms

• Atmospheric Electrical Measurements

• Applications of Atmospheric Electricity

• Frequently Asked Questions

1. Introduction to Atmospheric Electricity


Atmospheric electricity refers to the electrical properties and phenomena that occur in the Earth's atmosphere. The Earth's atmosphere is constantly charged due to the interaction of the Sun's radiation, cosmic rays, and thunderstorm activity. Atmospheric electricity has been studied for over a century and has led to the discovery of many important phenomena, including lightning, the ionosphere, and the aurora borealis.

2. Sources of Atmospheric Electricity


The primary sources of atmospheric electricity are the Sun's radiation, cosmic rays, and thunderstorm activity. The Sun's radiation causes the ionization of gases in the upper atmosphere, leading to the formation of the ionosphere. Cosmic rays, which are high-energy particles from space, also contribute to the ionization of the atmosphere. Thunderstorm activity causes the buildup of electric charges in the lower atmosphere, leading to lightning and other electrical phenomena.

3. Atmospheric Electrical Phenomena


Atmospheric electrical phenomena include lightning, thunderstorms, sprites, and elves. Lightning is the most well-known and dramatic atmospheric electrical phenomenon. It is caused by the buildup of electric charges in the atmosphere, leading to a discharge of electricity between the clouds and the ground. Thunderstorms are also a common atmospheric electrical phenomenon and are characterized by the buildup of electric charges in the lower atmosphere, leading to thunder and lightning.

Sprites and elves are less well-known atmospheric electrical phenomena. Sprites are large-scale electrical discharges that occur high in the atmosphere, above thunderstorms. Elves are electromagnetic pulses that occur in the ionosphere, caused by the interaction of lightning discharges with the ionosphere.

4. Lightning


Lightning is a natural electrical discharge that occurs in the atmosphere. It is caused by the buildup of electric charges in the atmosphere, which leads to a discharge of electricity between the clouds and the ground. Lightning can be very dangerous and can cause injury or death to people and damage to buildings and other structures.

There are several types of lightning, including cloud-to-ground lightning, intra-cloud lightning, and cloud-to-cloud lightning. Cloud-to-ground lightning is the most well-known type and occurs when a discharge of electricity travels from the cloud to the ground. Intra-cloud lightning occurs entirely within the cloud, while cloud-to-cloud lightning occurs between different clouds.

5. Thunderstorms


Thunderstorms are a type of weather phenomenon characterized by the buildup of electric charges in the atmosphere. Thunderstorms can produce lightning, thunder, heavy rain, strong winds, and even tornadoes. Thunderstorms can be very dangerous and can cause property damage and loss of life.

Thunderstorms are caused by the interaction of warm and cold air masses. Warm air rises, and as it does, it cools and condenses into clouds. The updrafts within the cloud cause the buildup of electric charges, which can lead to lightning and thunder.

6. Atmospheric Electrical Measurements

Atmospheric electrical measurements are used to study the electrical properties of the atmosphere. These measurements include electric field measurements, atmospheric conductivity measurements, and measurements of atmospheric ionization.

Electric field measurements are used to measure the strength and direction of the electric field in the atmosphere. Atmospheric conductivity measurements are used to measure the ability of the atmosphere to conduct electricity. Measurements of atmospheric ionization are used to measure the concentration of ions in the atmosphere.

7. Applications of Atmospheric Electricity


Atmospheric electricity has many practical applications. For example, it is used in the design of lightning protection systems for buildings and other structures. Atmospheric electricity is also used in the study of the ionosphere, which is important for radio communication and satellite navigation. Additionally, atmospheric electrical measurements can be used to study weather patterns and predict severe weather events.

The earth’s atmosphere extends to about 300 Km above the earth surface. The atmosphere is divided in four layers.
   300 km               400°C                                                                                     d4 = d/1010
Ionosphere                               Good Conductor                                                
Text Box: ConductivityText Box: Increases     80 km               -90°C                                                                                     d= d/105
Mesosphere                                                                                                               
                                                        
     50 Km               10°C                                                                                      d2 = d/1000
Stratosphere                                
                                                            
     12 km                -50°C                                                                                    d1 = d/10
Troposphere                             Poor Conductor
                      Temp = 15°C                                              density of air d = 1.29kg/m3    

Electrical properties of the atmosphere: -
(1)    The electrical phenomena in atmosphere take place between the earth surface and top of stratosphere. The 50 Km thick layers is like a blanket enveloping the earth.

(2)  An electric field 100 V/m is there downwards all over the earth, at ground level.

8. Frequently Asked Questions: FAQs


Q: Can atmospheric electricity be used as a source of energy? A: While atmospheric electricity is a source of energy, it is not currently practical to harness it for energy production due to the high cost and low efficiency of existing technologies.

Q: How is lightning formed? A: Lightning is formed by the buildup of electric charges in the atmosphere, which leads to a discharge of electricity between the clouds and the ground.

Q: What is the ionosphere? A: The ionosphere is a region of the Earth's upper atmosphere that is ionized by solar radiation. It plays an important role in radio communication and satellite navigation.

Q: What is atmospheric conductivity? A: Atmospheric conductivity is a measure of the ability of the atmosphere to conduct electricity. It is influenced by factors such as temperature, humidity, and ionization.

Q: How can atmospheric electricity be measured? A: Atmospheric electricity can be measured using a variety of instruments, including electric field meters, ion counters, and atmospheric conductivity meters. These instruments are used to measure the electric field, ionization, and conductivity of the atmosphere.

Q: Is atmospheric electricity dangerous? A: Atmospheric electricity can be dangerous, particularly during thunderstorms and lightning strikes. It is important to take precautions to protect yourself during severe weather events.

Q: What are sprites and elves? A: Sprites and elves are atmospheric electrical phenomena that occur high in the atmosphere. Sprites are large-scale electrical discharges, while elves are electromagnetic pulses caused by the interaction of lightning with the ionosphere.
          


No comments:

Post a Comment